Directions:(1-5) In these questions, relationship between different elements is shown in the statements. These statements are followed by two conclusions.
Give Answer:
P*Q means P is either greater than or equal to Q
P$Q means P is neither less than nor equal to Q
P@Q means P is neither greater than nor equal to Q
P&Q means P is equal to Q
P#Q means P is not greater than Q

1.
Statements
 A * B $ C # D;     F @ C & E # G
Conclusions
i) F @ A
ii) G @ B

Ans: 2

A ≥ B > C ≤ D;      F < C = E ≤ G
i) F < A (True)
ii) G < B (False)

2.
Statements
P # Q $ R @ S;      U @ R * T & V
Conclusions
i) U $ P
ii) V @ Q

Ans: 5

 P ≤ Q > R < S;     U < R ≥ T = V
i) U > P (False)
ii) V < Q (True)

3.
Statements
I @ J # K * L;        M $ N & O @ J
Conclusions
i) N @ L
ii) I $ M

Ans: 4

 I < J ≤ K ≥ L;       M > N = O < J
i) N < L (False)
ii) I > M (False)

4.
Statements
X @ Y $ Z # A;      C & B * Y @ D
Conclusions
i) C @ X
ii) Z # C

Ans: 4

X < Y> Z ≤ A;       C = B ≥ Y < D
i) C < X (False)
ii) Z ≤ C (False)

5.
Statements
G * H $ I & J;        L @ H # K * M
Conclusions
i) L @ G
ii) J @ K

Ans: 1

G ≥ H> I = J;        L < H ≤ K ≥ M
i) L < G (True)
ii) J < K (True)

Directions:(6-10) In these questions, relationship between different elements is shown in the statements. These statements are followed by two conclusions.
6.
Statements
P < Q ≤ R = S, Q > P = U < V
Conclusions
i) U < S
ii) S > V

Ans: 2
P < Q ≤ R = S, Q > P = U < V
i) U < S (True)
ii) S > V (False)

7.
Statements
A ≥ B > C ≤ D, C = E ≥ F < G
Conclusions
i) A < F
ii) D ≥ F

Ans: 5
A ≥ B > C ≤ D, C = E ≥ F < G
i) A < F (False)
ii) D ≥ F (True)

8.
Statements
I > J < K = L, M < N > J <O
Conclusions
i) L > O
ii) M < I

Ans: 4
I > J < K = L, M < N > J <O
i) L > O (False)
ii) M < I (False)

9.
Statements
T < U = V ≤ W, X < V < Y > Z
Conclusions
i) X < W
ii) Y > T

Ans: 1
T < U = V ≤ W, X < V < Y > Z
i) X < W (True)
ii) Y > T (True)

10.
Statements
M > N ≤ O = P, Q < N ≥ R < S
Conclusions
i) R < P
ii) P = R

Ans: 3
M > N ≤ O = P, Q < N ≥ R < S
i) R < P (False)
ii) P = R (False)
P≥R so either Conclusion I or Conclusion II follows

8 thoughts on “Inequality”

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top